Articles

Article Annexe AUTONOME ABROGE, en vigueur du au (Arrêté du 21 juillet 2010 fixant le programme d'enseignement spécifique de sciences de l'ingénieur au cycle terminal de la série scientifique)

Article Annexe AUTONOME ABROGE, en vigueur du au (Arrêté du 21 juillet 2010 fixant le programme d'enseignement spécifique de sciences de l'ingénieur au cycle terminal de la série scientifique)




SCIENCES DE L'INGÉNIEUR

CYCLE TERMINAL DE LA SÉRIE SCIENTIFIQUE





(Enseignements spécifiques)

I. - Objectifs généraux


Notre société devra relever de nombreux défis dans les prochaines décennies. Les démographes annoncent une forte croissance de la population mondiale, répartie inégalement sur les territoires. Il faudra donc proposer des réponses aux besoins fondamentaux des hommes, tels que l'accès à l'eau, à l'énergie, à l'alimentation, à l'habitat, au transport, à la santé, à l'éducation et à l'information.

Pour satisfaire ces besoins, la recherche de solutions devra se faire dans un contexte environnemental contraint, au sein d'une concurrence économique internationale et avec la nécessité d'assurer un développement durable pour tous.

La réponse à ces défis passe inévitablement par la formation d'ingénieurs et de chercheurs aux compétences scientifiques et technologiques pluridisciplinaires de haut niveau, capables d'innover, de prévoir et maîtriser les performances des systèmes (1) complexes, en intégrant les grandes questions sociétales et environnementales.

L'enseignement des sciences de l'ingénieur, dans le cycle terminal du lycée, a pour objectif d'aborder la démarche de l'ingénieur qui permet, en particulier :

- de vérifier les performances attendues d'un système, par l'évaluation de l'écart entre un cahier des charges et les réponses expérimentales (figure 1, écart 1) ;

- de proposer et de valider des modèles d'un système à partir d'essais, par l'évaluation de l'écart entre les performances mesurées et les performances simulées (figure 1, écart 2) ;

- de prévoir les performances d'un système à partir de modélisations, par l'évaluation de l'écart entre les performances simulées et les performances attendues au cahier des charges (figure 1, écart 3) ;

- de proposer des architectures de solutions, sous forme de schémas ou d'algorigrammes.



Vous pouvez consulter le tableau dans le

JOn° 199 du 28/08/2010 texte numéro 20



Figure 1 : représentation des différents écarts


L'identification et l'analyse de ces écarts peuvent mobiliser des compétences pluridisciplinaires, en particulier celles développées en mathématiques et en sciences physiques chimiques fondamentales et appliquées. Les sciences de l'ingénieur renforcent les liens entre les disciplines et participent à la poursuite d'études dans l'enseignement supérieur.

Les sciences de l'ingénieur développent des démarches pour analyser des systèmes complexes pluritechnologiques. Les compétences acquises sont ainsi transposables à l'ensemble des domaines scientifiques et technologiques, et permettent d'appréhender des situations inédites.

(1) Un système est une association structurée d'éléments ayant des relations entre eux. Il a été conçu dans le but de répondre à un besoin. Il est caractérisé par la nature de : - ses éléments constitutifs et des interactions entre ceux-ci ; - ses éléments environnants et des interactions de ceux-ci avec le système. Dans ce programme, le terme système recouvre tout le champ des produits manufacturés et des ouvrages, intégrés dans leur environnement. Le système peut être matériel, virtuel ou souhaité.


Interdisciplinarité

En classe de première, les travaux personnels encadrés sont intégrés dans l'horaire de sciences de l'ingénieur. Le principe de base est la pluridisciplinarité, deux disciplines au moins doivent être impliquées : la discipline caractéristique de la série ainsi que, par exemple, les mathématiques, la physique-chimie ou encore les sciences de la vie et de la Terre.
En classe terminale, un projet interdisciplinaire sera également mis en place dans un volume horaire d'environ 70 heures en collaboration avec les disciplines scientifiques ou encore les disciplines de l'enseignement commun.

TICE

Les technologies de l'information et de la communication sont systématiquement mises en œuvre dans cet enseignement. Elles accompagnent toutes les activités proposées :
― recherche et exploitation de dossiers numériques ;
― analyse structurelle des systèmes ;
― simulation de comportement des systèmes ;
― expérimentations assistées par ordinateur locales ou à distance et matérialisation d'idées (maquette numérique, programmation et prototypage rapide) ;
― suivi et comptes rendus d'activités d'analyse et de projet ;
― archivage et consultation des productions des élèves.
Toutes ces activités, individuelles et en équipes, s'inscrivent naturellement dans le contexte d'un environnement numérique de travail (ENT) et participent à la préparation du B2i niveau lycée.

Compétences terminales visées

L'enseignement des sciences de l'ingénieur a pour objectif de développer les compétences présentées sur la figure 2 ci-dessous :


Vous pouvez consulter le tableau dans le
JOn° 199 du 28/08/2010 texte numéro 20


Figure 2 : compétences développées en sciences de l'ingénieur

Les systèmes complexes choisis peuvent relever des grands domaines suivants : énergie, information et communication, transport, production de biens et de services, bâtiments et travaux publics, santé, agroalimentaire. Cette liste n'est pas exhaustive et les enseignants ont la possibilité de s'appuyer sur d'autres domaines qu'ils jugent pertinents.

II. - Programme

A. - Analyser
A1 Analyser le besoin
A2 Analyser le système
A3 Caractériser des écarts
B. - Modéliser
B1 Identifier et caractériser les grandeurs agissant sur un système
B2 Proposer ou justifier un modèle
B3 Résoudre et simuler
B4 Valider un modèle
C. - Expérimenter
C1 Justifier le choix d'un protocole expérimental
C2 Mettre en œuvre un protocole expérimental
D. - Communiquer
D1 Rechercher et traiter des informations
D2 Mettre en œuvre une communication
La représentation des systèmes, si elle s'avère nécessaire, se fera avec des outils numériques. L'utilisation des logiciels retenus n'implique pas la maîtrise de leurs fonctionnalités.
Chaque compétence est présentée avec les connaissances et les capacités associées :
― un premier tableau définit les compétences terminales attendues, spécifiant le contrat d'évaluation ;
― un second tableau présente les connaissances et les capacités associées ainsi que le niveau de maîtrise des capacités.
Les capacités associées aux connaissances seront dispensées à partir de tout ou partie d'un système, disponible sous forme matérielle ou virtuelle, instrumenté si nécessaire, défini par un dossier technique.
La maîtrise des capacités est définie selon les trois niveaux suivants :
Niveau A ― Les concepts sont abordés dans un contexte d'application adapté. Les élèves découvrent la définition et les caractéristiques de chaque concept.
Niveau B ― Les activités proposées sont simples et variées. Elles mobilisent des outils et des méthodes dans un contexte connu. La démarche est donnée, la résolution est guidée et le choix de la méthode est toujours précisé.
Niveau C ― Les situations proposées exigent la mise en œuvre de démarches mobilisant des outils et des méthodes dans un contexte nouveau. Les élèves doivent pouvoir justifier ces démarches et interpréter tout ou partie des résultats obtenus par rapport au problème posé.
Lorsque le niveau est précisé en classe de première, cela signifie qu'il est atteint en fin de classe de première et qu'il peut être utilisé en classe de terminale.
Lorsque le niveau n'est précisé qu'en classe de terminale, cela signifie qu'il est atteint en fin de classe de terminale mais qu'il peut être introduit en classe de première.

A. - Analyser
A1 ― Analyser le besoin

Compétences attendues :
― définir le besoin ;
― définir les fonctions de service ;
― identifier les contraintes ;
― traduire un besoin fonctionnel en problématique technique.

CONNAISSANCES
CAPACITÉS
1re
T
Besoin, finalités, contraintes, cahier des charges
Décrire le besoin
Présenter la fonction globale
Identifier les contraintes (fonctionnelles, sociétales, environnementales...)
Ordonner les contraintes (critère, niveau, flexibilité)
C

Analyse fonctionnelle externe
Expression fonctionnelle du besoin
Présenter à l'aide d'un diagramme des interacteurs une réponse technique à un besoin
C

Fonctions d'usage, de service, d'estime
Identifier et caractériser les fonctions de service
C


A2 ― Analyser le système

Compétences attendues :
― identifier et ordonner les fonctions techniques qui réalisent les fonctions de service et respectent les contraintes ;
― identifier les éléments transformés et les flux ;
― décrire les liaisons entre les blocs fonctionnels ;
― identifier l'organisation structurelle ;
― identifier les matériaux des constituants et leurs propriétés en relation avec les fonctions et les contraintes.

CONNAISSANCES
CAPACITÉS
1re
T
Système
Frontière d'étude
Environnement
Définir le système et sa frontière d'étude
Analyser l'environnement d'un système, ses contraintes
Décrire le fonctionnement d'un système
Identifier des évolutions possibles d'un système
C

Architectures fonctionnelle et organique d'un système
Identifier les fonctions techniques
Déterminer les constituants dédiés aux fonctions d'un système et en justifier le choix
Identifier les niveaux fonctionnels et organiques d'un système
Présenter les architectures fonctionnelle et organique d'un système à l'aide d'un diagramme FAST
Proposer des évolutions sous forme fonctionnelle
C


Relier le coût d'une solution technique au besoin exprimé
A

Impact environnemental
Evaluer l'impact environnemental (matériaux, énergie, nuisances)
A

Matière d'œuvre, valeur ajoutée, flux
Identifier la matière d'œuvre et la valeur ajoutée
Représenter les flux (matière, énergie, information) à l'aide d'un actigramme A-0 de la méthode SADT
C

Chaîne d'information
Identifier et décrire la chaîne d'information du système
C

Chaîne d'énergie
Identifier et décrire la chaîne d'énergie du système
Analyser les apports d'énergie, les transferts, le stockage, les pertes énergétiques
C


Réaliser le bilan énergétique d'un système

C
Systèmes logiques événementiels
Langage de description : graphe d'états, logigramme, GRAFCET, algorigramme
Décrire et analyser le comportement d'un système
C

Systèmes asservis
Différencier un système asservi d'un système non asservi

B
Composants réalisant les fonctions de la chaîne d'énergie
Identifier les composants réalisant les fonctions Alimenter, Distribuer, Convertir, Transmettre
C


Justifier la solution choisie

B
Composants réalisant les fonctions de la chaîne d'information
Identifier les composants réalisant les fonctions Acquérir, Traiter, Communiquer
C


Justifier la solution choisie

B
Réversibilité d'une source, d'un actionneur, d'une chaîne de transmission
Analyser la réversibilité d'un composant dans une chaîne d'énergie

B
Système de numération, codage
Analyser et interpréter une information numérique
C

Modèle OSI
Décrire l'organisation des principaux protocoles

A
Réseaux de communication
Support de communication, notion de protocole, paramètres de configuration
Notion de trame, liaisons série et parallèle
Analyser les formats et les flux d'information
Identifier les architectures fonctionnelle et matérielle
Identifier les supports de communication
Identifier et analyser le message transmis, notion de protocole, paramètres de configuration

B
Architecture d'un réseau (topologie, mode de communication, type de transmission, méthode d'accès au support, techniques de commutation)
Identifier les architectures fonctionnelle et matérielle d'un réseau

B
Matériaux
Identifier la famille d'un matériau
Mettre en relation les propriétés du matériau avec les performances du système
C

Comportement du solide déformable
Analyser les sollicitations dans les composants

C

Analyser les déformations des composants

C

Analyser les contraintes mécaniques dans un composant

C
Commentaires :
L'analyse d'un système se fait en le recontextualisant et en prenant en compte son environnement.
L'étude des systèmes logiques événementiels intègre les systèmes à logique combinatoire et séquentielle.
L'étude de la logique combinatoire se limite aux fonctions logiques NON, ET, OU, NON ET, NON OU.
La présentation du modèle OSI se limite à la couche application et à la couche transport.
Les familles de matériaux retenues sont les métalliques, les céramiques, les organiques et les composites. Une présentation des propriétés communes à chaque famille est privilégiée à une connaissance livresque des matériaux.
Il est utile de proposer une vision globale de la géoéconomie des matériaux : où sont les ressources ? Quels sont les coûts et l'empreinte carbone dus au transport et ceux liés à la mise en œuvre ?
En ce qui concerne le comportement du solide déformable, l'étude s'appuie sur des résultats obtenus à l'aide d'outils numériques.



A3 ― Caractériser des écarts

Compétences attendues :
― comparer les résultats expérimentaux avec les critères du cahier des charges et interpréter les écarts ;
― comparer les résultats expérimentaux avec les résultats simulés et interpréter les écarts ;
― comparer les résultats simulés avec les critères du cahier des charges et interpréter les écarts.

CONNAISSANCES
CAPACITÉS
1re
T
Analyse des écarts
Traiter des données de mesures (valeur moyenne, médiane, caractéristique...)
Identifier des valeurs erronées
Quantifier des écarts entre des valeurs attendues et des valeurs mesurées
Quantifier des écarts entre des valeurs attendues et des valeurs obtenues par simulation
Quantifier des écarts entre des valeurs mesurées et des valeurs obtenues par simulation
C


Rechercher et proposer des causes aux écarts constatés

C

B. ― Modéliser
B1 ― Identifier et caractériser les grandeurs agissant sur un système

Compétences attendues :
― définir, justifier la frontière de tout ou partie d'un système et répertorier les interactions ;
― choisir les grandeurs et les paramètres influents en vue de les modéliser.

CONNAISSANCES
CAPACITÉS
1re
T
Frontière de l'étude
Isoler un système et justifier l'isolement
Identifier les grandeurs traversant la frontière d'étude
C

Caractéristiques des grandeurs physiques (mécaniques, électriques, thermiques, acoustiques, lumineuses, etc.)
Qualifier les grandeurs d'entrée et de sortie d'un système isolé
Identifier la nature (grandeur effort, grandeur flux)
Décrire les lois d'évolution des grandeurs
Utiliser les lois et relations entre les grandeurs

C
Matériaux
Identifier les propriétés des matériaux des composants qui influent sur le système

C
Énergie et puissances
Notion de pertes
Associer les grandeurs physiques aux échanges d'énergie et à la transmission de puissance
Identifier les pertes d'énergie

C
Flux d'information
Identifier la nature de l'information et la nature du signal

C
Flux de matière
Qualifier la nature des matières, quantifier les volumes et les masses
C

Commentaires :
La puissance est toujours égale au produit d'une grandeur d'effort (force, couple, pression, tension, etc.) par une grandeur de flux (vitesse, vitesse angulaire, débit, intensité du courant, etc.).
Le point de vue de l'étude conditionne le choix de la grandeur d'effort ou de la grandeur de flux à utiliser.
Pour les matériaux, sont étudiés la masse volumique, la rigidité, la résistance, la ténacité, la température de fusion, les conductivités électrique et thermique et le coefficient de dilatation.



B2 ― Proposer ou justifier un modèle

Compétences attendues :
― associer un modèle à un système ou à son comportement ;
― préciser ou justifier les limites de validité du modèle envisagé.

CONNAISSANCES
CAPACITÉS
1re
T
Chaîne d'énergie
Associer un modèle à une source d'énergie
C


Associer un modèle aux composants d'une chaîne d'énergie
Déterminer les points de fonctionnement du régime permanent d'un actionneur au sein d'un procédé

C
Chaîne d'information
Associer un modèle aux composants d'une chaîne d'information

C
Ordre d'un système
Identifier les paramètres à partir d'une réponse indicielle
Associer un modèle de comportement (premier et second ordre) à une réponse indicielle

B
Systèmes logiques à événements discrets
Langage de description : graphe d'états, logigramme, GRAFCET, algorigramme
Traduire le comportement d'un système

C
Liaisons
Construire un modèle et le représenter à l'aide de schémas
Préciser les paramètres géométriques
Etablir la réciprocité mouvement relatif/actions mécaniques associées
C

Graphe de liaisons
Construire un graphe de liaisons (avec ou sans les efforts)
C

Modèle du solide
Choisir le modèle de solide, déformable ou indéformable selon le point de vue

C

Modéliser et représenter géométriquement le réel

C
Action mécanique
Modéliser les actions mécaniques de contact ou à distance

C
Modèle de matériau
Choisir ou justifier un modèle comportemental de matériau
C

Comportement du solide déformable
Caractériser les sollicitations dans les composants

B

Caractériser les déformations des composants

B

Caractériser les contraintes mécaniques dans un composant

B
Modélisation plane
Justifier la pertinence de la modélisation plane
C

Commentaires :
L'outil torseur peut être utilisé pour la résolution des problèmes en trois dimensions.
Les liaisons sont considérées sans jeu, avec ou sans frottement, élastiques ou rigides.
Pour les matériaux, les modèles comportementaux étudiés sont l'homogénéité, l'isotropie et l'élasticité.
En ce qui concerne le comportement du solide déformable, l'étude s'appuie essentiellement sur les outils numériques.
En modélisation plane, on se limite aux modèles des liaisons retenues (pivot, glissière et ponctuelle).

B3 ― Résoudre et simuler

Compétences attendues :
― choisir et mettre en œuvre une méthode de résolution ;
― simuler le fonctionnement de tout ou partie d'un système à l'aide d'un modèle fourni.

CONNAISSANCES
CAPACITÉS
1re
T
Principe fondamental de la dynamique (PFD)
Principes fondamentaux d'étude des circuits
Etablir de façon analytique les expressions d'efforts (force, couple, pression, tension, etc.) et de flux (vitesse, fréquence de rotation, débit, intensité du courant, etc.)
Traduire de façon analytique le comportement d'un système

C
Paramètres d'une simulation
Adapter les paramètres de simulation, durée, incrément temporel, choix des grandeurs affichées, échelles, à l'amplitude et la dynamique de grandeurs simulées

C
Ordre d'un système
Interpréter les résultats d'une simulation fréquentielle des systèmes du premier et du second ordre

B
Comportement du solide déformable
Déterminer les parties les plus sollicitées dans un composant

C

Déterminer les valeurs extrêmes des déformations



Déterminer des concentrations de contraintes dans un composant


Modélisation plane
Déterminer le champ des vecteurs vitesses des points d'un solide
C

Commentaires :
Les méthodes graphiques peuvent être utilisées mais leur maîtrise n'est pas exigée.
Pour le comportement du solide déformable, les déterminations se feront à partir des résultats de simulation.
Le PFD s'applique aux solides en translation par rapport à un référentiel, ou en rotation autour d'un axe fixe.
Le principe fondamental de la statique est présenté comme un cas particulier du principe fondamental de la dynamique.
En classe de première, l'application du PFD se limite à des problèmes plans.
La résolution des problèmes de statique plane est conduite à l'aide du principe fondamental de la dynamique.
L'application du PFD en référentiel non galiléen est présentée, en précisant les termes dus aux effets d'inertie.



B4 ― Valider un modèle

Compétences attendues :
― interpréter les résultats obtenus ;
― préciser les limites de validité du modèle utilisé ;
― modifier les paramètres du modèle pour répondre au cahier des charges ou aux résultats expérimentaux ;
― valider un modèle optimisé fourni.

CONNAISSANCES
CAPACITÉS
1re
T
Modèle de connaissance
Vérifier la compatibilité des résultats obtenus (amplitudes et variations) avec les lois et principes physiques d'évolution des grandeurs

C

Comparer les résultats obtenus (amplitudes et variations) avec les données du cahier des charges fonctionnel
C

Matériaux
Identifier l'influence des propriétés des matériaux sur les performances du système
Proposer des matériaux de substitution pour améliorer les performances du système

B
Structures
Valider l'influence de la structure sur les performances du système
Proposer des modifications structurelles pour améliorer les performances du système

C
Grandeurs influentes d'un modèle
Modifier les paramètres d'un modèle

C
Commentaires :
Quelques exemples d'utilisation de nouveaux matériaux sont présentés, comme les nanomatériaux, qui permettent de modifier fortement les propriétés non mécaniques comme la conductivité.

C. - Expérimenter
C1 ― Justifier le choix d'un protocole expérimental

Compétences attendues :
― identifier les grandeurs physiques à mesurer ;
― décrire une chaîne d'acquisition ;
― identifier le comportement des composants ;
― justifier le choix des essais réalisés.

CONNAISSANCES
CAPACITÉS
1re
T
Capteurs
Qualifier les caractéristiques d'entrée―sortie d'un capteur
Justifier le choix d'un capteur ou d'un appareil de mesure vis-à-vis de la grandeur physique à mesurer
Justifier les caractéristiques (calibre, position...) d'un appareil de mesure

C
Prévision quantitative de la réponse du système
Identifier le comportement des composants du système
Prévoir l'ordre de grandeur de la mesure

C
Chaîne d'information, structure et fonctionnement
Identifier la nature et les caractéristiques des grandeurs en divers points de la chaîne d'information

C

Maîtriser les fonctions des appareils de mesure et leurs mises en œuvre

C
Commentaires :
Dans ce programme, le terme capteur regroupe les capteurs (information analogique), les détecteurs (information TOR) et les codeurs (information numérique).
Pour justifier le choix des grandeurs à mesurer et un protocole expérimental, il est nécessaire de savoir prévoir quantitativement le comportement du système, l'influence des composants et l'ordre de grandeur de la réponse.

C2 ― Mettre en œuvre un protocole expérimental

Compétences attendues :
― conduire les essais en respectant les consignes de sécurité à partir d'un protocole fourni ;
― traiter les données mesurées en vue d'analyser les écarts.

CONNAISSANCES
CAPACITÉS
1re
T
Appareils de mesures, règles d'utilisation
Mettre en œuvre un appareil de mesure
Paramétrer une chaîne d'acquisition

C
Paramètres de configuration du système
Régler les paramètres de fonctionnement d'un système

C
Paramètres de configuration d'un réseau
Paramétrer un protocole de communication

C
Routines, procédures...
Systèmes logiques à événements discrets
Générer un programme et l'implanter dans le système cible

C
Modèles de comportement
Analyser les résultats expérimentaux
Traiter les résultats expérimentaux, et extraire la ou les grandeurs désirée(s)

C
Commentaires :
Le traitement des mesures et la présentation des résultats mobilisent systématiquement les outils numériques.

D. - Communiquer
D1 ― Rechercher et traiter des informations

Compétences attendues :
― rechercher des informations ;
― analyser, choisir et classer des informations.

CONNAISSANCES
CAPACITÉS
1re
T
Dossier technique
Rechercher une information dans un dossier technique
Effectuer la synthèse des informations disponibles dans un dossier technique

C
Bases de données, sélection, tri, classement de données
Optimiser les paramètres et les critères de recherche en vue de répondre au problème posé
C

Internet, outil de travail collaboratif, blogs, forums, moteur de recherche
Rechercher des informations
Vérifier la nature de l'information
Trier des informations selon des critères
Utiliser des outils adaptés pour rechercher l'information
Mettre à jour l'information
C


D2 ― Mettre en œuvre une communication

Compétences attendues :
― choisir un support de communication et un média adapté, argumenter ;
― produire un support de communication ;
― adapter sa stratégie de communication au contexte.

CONNAISSANCES
CAPACITÉS
1re
T
Croquis, schémas
Réaliser un croquis ou un schéma dans un objectif de communication
C

Production de documents
Distinguer les différents types de documents en fonction de leurs usages
Choisir l'outil bureautique adapté à l'objectif
Réaliser un document numérique
Réaliser et scénariser un document multimédia
C

Commentaires :
Les normes des croquis et schémas ne font pas l'objet de cours spécifiques et sont à la disposition des élèves.
La mise en œuvre de la communication n'est pas une finalité. Elle est liée à l'ensemble des activités, et notamment au projet.

III. - Projet

Le projet mobilise des compétences pluridisciplinaires, en particulier celles développées en sciences de l'ingénieur, en mathématiques, en sciences physiques, chimiques, fondamentales et appliquées, en sciences de la vie et de la Terre, et sollicite des démarches de créativité pour imaginer des solutions qui répondent à un besoin.
Les activités des élèves sont organisées, par groupes, autour d'une démarche qui consiste à :
― analyser le problème à résoudre ;
― imaginer des solutions ;
― choisir une solution et justifier le choix d'un point de vue scientifique, technologique, socio-économique ;
― formaliser la solution ;
― réaliser tout ou partie de la solution ;
― évaluer les performances de la solution ;
― présenter la démarche suivie.
Dans le cadre de ces activités, les productions attendues peuvent être :
― des justifications scientifiques, technologiques, socio-économiques... validant la solution proposée ;
― des architectures de solutions sous forme de schémas, croquis, blocs, diagrammes fonctionnels et structurels ou d'algorithmes ;
― des documents de formalisation de la solution imaginée ;
― des supports de communication ;
― un prototype ou une maquette numérique ou matérielle.