SCIENCES DE L'INGÉNIEUR
CYCLE TERMINAL DE LA SÉRIE SCIENTIFIQUE
(Enseignements spécifiques)
I. - Objectifs généraux
Notre société devra relever de nombreux défis dans les prochaines décennies. Les démographes annoncent une forte croissance de la population mondiale, répartie inégalement sur les territoires. Il faudra donc proposer des réponses aux besoins fondamentaux des hommes, tels que l'accès à l'eau, à l'énergie, à l'alimentation, à l'habitat, au transport, à la santé, à l'éducation et à l'information.
Pour satisfaire ces besoins, la recherche de solutions devra se faire dans un contexte environnemental contraint, au sein d'une concurrence économique internationale et avec la nécessité d'assurer un développement durable pour tous.
La réponse à ces défis passe inévitablement par la formation d'ingénieurs et de chercheurs aux compétences scientifiques et technologiques pluridisciplinaires de haut niveau, capables d'innover, de prévoir et maîtriser les performances des systèmes (1) complexes, en intégrant les grandes questions sociétales et environnementales.
L'enseignement des sciences de l'ingénieur, dans le cycle terminal du lycée, a pour objectif d'aborder la démarche de l'ingénieur qui permet, en particulier :
- de vérifier les performances attendues d'un système, par l'évaluation de l'écart entre un cahier des charges et les réponses expérimentales (figure 1, écart 1) ;
- de proposer et de valider des modèles d'un système à partir d'essais, par l'évaluation de l'écart entre les performances mesurées et les performances simulées (figure 1, écart 2) ;
- de prévoir les performances d'un système à partir de modélisations, par l'évaluation de l'écart entre les performances simulées et les performances attendues au cahier des charges (figure 1, écart 3) ;
- de proposer des architectures de solutions, sous forme de schémas ou d'algorigrammes.
Vous pouvez consulter le tableau dans le
JOn° 199 du 28/08/2010 texte numéro 20
Figure 1 : représentation des différents écarts
L'identification et l'analyse de ces écarts peuvent mobiliser des compétences pluridisciplinaires, en particulier celles développées en mathématiques et en sciences physiques chimiques fondamentales et appliquées. Les sciences de l'ingénieur renforcent les liens entre les disciplines et participent à la poursuite d'études dans l'enseignement supérieur.
Les sciences de l'ingénieur développent des démarches pour analyser des systèmes complexes pluritechnologiques. Les compétences acquises sont ainsi transposables à l'ensemble des domaines scientifiques et technologiques, et permettent d'appréhender des situations inédites.
(1) Un système est une association structurée d'éléments ayant des relations entre eux. Il a été conçu dans le but de répondre à un besoin. Il est caractérisé par la nature de : - ses éléments constitutifs et des interactions entre ceux-ci ; - ses éléments environnants et des interactions de ceux-ci avec le système. Dans ce programme, le terme système recouvre tout le champ des produits manufacturés et des ouvrages, intégrés dans leur environnement. Le système peut être matériel, virtuel ou souhaité.
Interdisciplinarité
En classe de première, les travaux personnels encadrés sont intégrés dans l'horaire de sciences de l'ingénieur. Le principe de base est la pluridisciplinarité, deux disciplines au moins doivent être impliquées : la discipline caractéristique de la série ainsi que, par exemple, les mathématiques, la physique-chimie ou encore les sciences de la vie et de la Terre.
En classe terminale, un projet interdisciplinaire sera également mis en place dans un volume horaire d'environ 70 heures en collaboration avec les disciplines scientifiques ou encore les disciplines de l'enseignement commun.
TICE
Les technologies de l'information et de la communication sont systématiquement mises en œuvre dans cet enseignement. Elles accompagnent toutes les activités proposées :
― recherche et exploitation de dossiers numériques ;
― analyse structurelle des systèmes ;
― simulation de comportement des systèmes ;
― expérimentations assistées par ordinateur locales ou à distance et matérialisation d'idées (maquette numérique, programmation et prototypage rapide) ;
― suivi et comptes rendus d'activités d'analyse et de projet ;
― archivage et consultation des productions des élèves.
Toutes ces activités, individuelles et en équipes, s'inscrivent naturellement dans le contexte d'un environnement numérique de travail (ENT) et participent à la préparation du B2i niveau lycée.
Compétences terminales visées
L'enseignement des sciences de l'ingénieur a pour objectif de développer les compétences présentées sur la figure 2 ci-dessous :
Vous pouvez consulter le tableau dans le
JOn° 199 du 28/08/2010 texte numéro 20
Figure 2 : compétences développées en sciences de l'ingénieur
Les systèmes complexes choisis peuvent relever des grands domaines suivants : énergie, information et communication, transport, production de biens et de services, bâtiments et travaux publics, santé, agroalimentaire. Cette liste n'est pas exhaustive et les enseignants ont la possibilité de s'appuyer sur d'autres domaines qu'ils jugent pertinents.
II. - Programme
A. - Analyser
A1 Analyser le besoin
A2 Analyser le système
A3 Caractériser des écarts
B. - Modéliser
B1 Identifier et caractériser les grandeurs agissant sur un système
B2 Proposer ou justifier un modèle
B3 Résoudre et simuler
B4 Valider un modèle
C. - Expérimenter
C1 Justifier le choix d'un protocole expérimental
C2 Mettre en œuvre un protocole expérimental
D. - Communiquer
D1 Rechercher et traiter des informations
D2 Mettre en œuvre une communication
La représentation des systèmes, si elle s'avère nécessaire, se fera avec des outils numériques. L'utilisation des logiciels retenus n'implique pas la maîtrise de leurs fonctionnalités.
Chaque compétence est présentée avec les connaissances et les capacités associées :
― un premier tableau définit les compétences terminales attendues, spécifiant le contrat d'évaluation ;
― un second tableau présente les connaissances et les capacités associées ainsi que le niveau de maîtrise des capacités.
Les capacités associées aux connaissances seront dispensées à partir de tout ou partie d'un système, disponible sous forme matérielle ou virtuelle, instrumenté si nécessaire, défini par un dossier technique.
La maîtrise des capacités est définie selon les trois niveaux suivants :
Niveau A ― Les concepts sont abordés dans un contexte d'application adapté. Les élèves découvrent la définition et les caractéristiques de chaque concept.
Niveau B ― Les activités proposées sont simples et variées. Elles mobilisent des outils et des méthodes dans un contexte connu. La démarche est donnée, la résolution est guidée et le choix de la méthode est toujours précisé.
Niveau C ― Les situations proposées exigent la mise en œuvre de démarches mobilisant des outils et des méthodes dans un contexte nouveau. Les élèves doivent pouvoir justifier ces démarches et interpréter tout ou partie des résultats obtenus par rapport au problème posé.
Lorsque le niveau est précisé en classe de première, cela signifie qu'il est atteint en fin de classe de première et qu'il peut être utilisé en classe de terminale.
Lorsque le niveau n'est précisé qu'en classe de terminale, cela signifie qu'il est atteint en fin de classe de terminale mais qu'il peut être introduit en classe de première.
A. - Analyser
A1 ― Analyser le besoin
Compétences attendues :
― définir le besoin ;
― définir les fonctions de service ;
― identifier les contraintes ;
― traduire un besoin fonctionnel en problématique technique.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Besoin, finalités, contraintes, cahier des charges |
Décrire le besoin Présenter la fonction globale Identifier les contraintes (fonctionnelles, sociétales, environnementales...) Ordonner les contraintes (critère, niveau, flexibilité) |
C |
|
Analyse fonctionnelle externe Expression fonctionnelle du besoin |
Présenter à l'aide d'un diagramme des interacteurs une réponse technique à un besoin |
C |
|
Fonctions d'usage, de service, d'estime |
Identifier et caractériser les fonctions de service |
C |
|
A2 ― Analyser le système
Compétences attendues :
― identifier et ordonner les fonctions techniques qui réalisent les fonctions de service et respectent les contraintes ;
― identifier les éléments transformés et les flux ;
― décrire les liaisons entre les blocs fonctionnels ;
― identifier l'organisation structurelle ;
― identifier les matériaux des constituants et leurs propriétés en relation avec les fonctions et les contraintes.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Système Frontière d'étude Environnement |
Définir le système et sa frontière d'étude Analyser l'environnement d'un système, ses contraintes Décrire le fonctionnement d'un système Identifier des évolutions possibles d'un système |
C |
|
Architectures fonctionnelle et organique d'un système |
Identifier les fonctions techniques Déterminer les constituants dédiés aux fonctions d'un système et en justifier le choix Identifier les niveaux fonctionnels et organiques d'un système Présenter les architectures fonctionnelle et organique d'un système à l'aide d'un diagramme FAST Proposer des évolutions sous forme fonctionnelle |
C |
|
|
Relier le coût d'une solution technique au besoin exprimé |
A |
|
Impact environnemental |
Evaluer l'impact environnemental (matériaux, énergie, nuisances) |
A |
|
Matière d'œuvre, valeur ajoutée, flux |
Identifier la matière d'œuvre et la valeur ajoutée Représenter les flux (matière, énergie, information) à l'aide d'un actigramme A-0 de la méthode SADT |
C |
|
Chaîne d'information |
Identifier et décrire la chaîne d'information du système |
C |
|
Chaîne d'énergie |
Identifier et décrire la chaîne d'énergie du système Analyser les apports d'énergie, les transferts, le stockage, les pertes énergétiques |
C |
|
|
Réaliser le bilan énergétique d'un système |
|
C |
Systèmes logiques événementiels Langage de description : graphe d'états, logigramme, GRAFCET, algorigramme |
Décrire et analyser le comportement d'un système |
C |
|
Systèmes asservis |
Différencier un système asservi d'un système non asservi |
|
B |
Composants réalisant les fonctions de la chaîne d'énergie |
Identifier les composants réalisant les fonctions Alimenter, Distribuer, Convertir, Transmettre |
C |
|
|
Justifier la solution choisie |
|
B |
Composants réalisant les fonctions de la chaîne d'information |
Identifier les composants réalisant les fonctions Acquérir, Traiter, Communiquer |
C |
|
|
Justifier la solution choisie |
|
B |
Réversibilité d'une source, d'un actionneur, d'une chaîne de transmission |
Analyser la réversibilité d'un composant dans une chaîne d'énergie |
|
B |
Système de numération, codage |
Analyser et interpréter une information numérique |
C |
|
Modèle OSI |
Décrire l'organisation des principaux protocoles |
|
A |
Réseaux de communication Support de communication, notion de protocole, paramètres de configuration Notion de trame, liaisons série et parallèle |
Analyser les formats et les flux d'information Identifier les architectures fonctionnelle et matérielle Identifier les supports de communication Identifier et analyser le message transmis, notion de protocole, paramètres de configuration |
|
B |
Architecture d'un réseau (topologie, mode de communication, type de transmission, méthode d'accès au support, techniques de commutation) |
Identifier les architectures fonctionnelle et matérielle d'un réseau |
|
B |
Matériaux |
Identifier la famille d'un matériau Mettre en relation les propriétés du matériau avec les performances du système |
C |
|
Comportement du solide déformable |
Analyser les sollicitations dans les composants |
|
C |
|
Analyser les déformations des composants |
|
C |
|
Analyser les contraintes mécaniques dans un composant |
|
C |
Commentaires : L'analyse d'un système se fait en le recontextualisant et en prenant en compte son environnement. L'étude des systèmes logiques événementiels intègre les systèmes à logique combinatoire et séquentielle. L'étude de la logique combinatoire se limite aux fonctions logiques NON, ET, OU, NON ET, NON OU. La présentation du modèle OSI se limite à la couche application et à la couche transport. Les familles de matériaux retenues sont les métalliques, les céramiques, les organiques et les composites. Une présentation des propriétés communes à chaque famille est privilégiée à une connaissance livresque des matériaux. Il est utile de proposer une vision globale de la géoéconomie des matériaux : où sont les ressources ? Quels sont les coûts et l'empreinte carbone dus au transport et ceux liés à la mise en œuvre ? En ce qui concerne le comportement du solide déformable, l'étude s'appuie sur des résultats obtenus à l'aide d'outils numériques. |
A3 ― Caractériser des écarts
Compétences attendues :
― comparer les résultats expérimentaux avec les critères du cahier des charges et interpréter les écarts ;
― comparer les résultats expérimentaux avec les résultats simulés et interpréter les écarts ;
― comparer les résultats simulés avec les critères du cahier des charges et interpréter les écarts.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Analyse des écarts |
Traiter des données de mesures (valeur moyenne, médiane, caractéristique...) Identifier des valeurs erronées Quantifier des écarts entre des valeurs attendues et des valeurs mesurées Quantifier des écarts entre des valeurs attendues et des valeurs obtenues par simulation Quantifier des écarts entre des valeurs mesurées et des valeurs obtenues par simulation |
C |
|
|
Rechercher et proposer des causes aux écarts constatés |
|
C |
B. ― Modéliser
B1 ― Identifier et caractériser les grandeurs agissant sur un système
Compétences attendues :
― définir, justifier la frontière de tout ou partie d'un système et répertorier les interactions ;
― choisir les grandeurs et les paramètres influents en vue de les modéliser.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Frontière de l'étude |
Isoler un système et justifier l'isolement Identifier les grandeurs traversant la frontière d'étude |
C |
|
Caractéristiques des grandeurs physiques (mécaniques, électriques, thermiques, acoustiques, lumineuses, etc.) |
Qualifier les grandeurs d'entrée et de sortie d'un système isolé Identifier la nature (grandeur effort, grandeur flux) Décrire les lois d'évolution des grandeurs Utiliser les lois et relations entre les grandeurs |
|
C |
Matériaux |
Identifier les propriétés des matériaux des composants qui influent sur le système |
|
C |
Énergie et puissances Notion de pertes |
Associer les grandeurs physiques aux échanges d'énergie et à la transmission de puissance Identifier les pertes d'énergie |
|
C |
Flux d'information |
Identifier la nature de l'information et la nature du signal |
|
C |
Flux de matière |
Qualifier la nature des matières, quantifier les volumes et les masses |
C |
|
Commentaires : La puissance est toujours égale au produit d'une grandeur d'effort (force, couple, pression, tension, etc.) par une grandeur de flux (vitesse, vitesse angulaire, débit, intensité du courant, etc.). Le point de vue de l'étude conditionne le choix de la grandeur d'effort ou de la grandeur de flux à utiliser. Pour les matériaux, sont étudiés la masse volumique, la rigidité, la résistance, la ténacité, la température de fusion, les conductivités électrique et thermique et le coefficient de dilatation. |
B2 ― Proposer ou justifier un modèle
Compétences attendues :
― associer un modèle à un système ou à son comportement ;
― préciser ou justifier les limites de validité du modèle envisagé.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Chaîne d'énergie |
Associer un modèle à une source d'énergie |
C |
|
|
Associer un modèle aux composants d'une chaîne d'énergie Déterminer les points de fonctionnement du régime permanent d'un actionneur au sein d'un procédé |
|
C |
Chaîne d'information |
Associer un modèle aux composants d'une chaîne d'information |
|
C |
Ordre d'un système |
Identifier les paramètres à partir d'une réponse indicielle Associer un modèle de comportement (premier et second ordre) à une réponse indicielle |
|
B |
Systèmes logiques à événements discrets Langage de description : graphe d'états, logigramme, GRAFCET, algorigramme |
Traduire le comportement d'un système |
|
C |
Liaisons |
Construire un modèle et le représenter à l'aide de schémas Préciser les paramètres géométriques Etablir la réciprocité mouvement relatif/actions mécaniques associées |
C |
|
Graphe de liaisons |
Construire un graphe de liaisons (avec ou sans les efforts) |
C |
|
Modèle du solide |
Choisir le modèle de solide, déformable ou indéformable selon le point de vue |
|
C |
|
Modéliser et représenter géométriquement le réel |
|
C |
Action mécanique |
Modéliser les actions mécaniques de contact ou à distance |
|
C |
Modèle de matériau |
Choisir ou justifier un modèle comportemental de matériau |
C |
|
Comportement du solide déformable |
Caractériser les sollicitations dans les composants |
|
B |
|
Caractériser les déformations des composants |
|
B |
|
Caractériser les contraintes mécaniques dans un composant |
|
B |
Modélisation plane |
Justifier la pertinence de la modélisation plane |
C |
|
Commentaires : L'outil torseur peut être utilisé pour la résolution des problèmes en trois dimensions. Les liaisons sont considérées sans jeu, avec ou sans frottement, élastiques ou rigides. Pour les matériaux, les modèles comportementaux étudiés sont l'homogénéité, l'isotropie et l'élasticité. En ce qui concerne le comportement du solide déformable, l'étude s'appuie essentiellement sur les outils numériques. En modélisation plane, on se limite aux modèles des liaisons retenues (pivot, glissière et ponctuelle). |
B3 ― Résoudre et simuler
Compétences attendues :
― choisir et mettre en œuvre une méthode de résolution ;
― simuler le fonctionnement de tout ou partie d'un système à l'aide d'un modèle fourni.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Principe fondamental de la dynamique (PFD) Principes fondamentaux d'étude des circuits |
Etablir de façon analytique les expressions d'efforts (force, couple, pression, tension, etc.) et de flux (vitesse, fréquence de rotation, débit, intensité du courant, etc.) Traduire de façon analytique le comportement d'un système |
|
C |
Paramètres d'une simulation |
Adapter les paramètres de simulation, durée, incrément temporel, choix des grandeurs affichées, échelles, à l'amplitude et la dynamique de grandeurs simulées |
|
C |
Ordre d'un système |
Interpréter les résultats d'une simulation fréquentielle des systèmes du premier et du second ordre |
|
B |
Comportement du solide déformable |
Déterminer les parties les plus sollicitées dans un composant |
|
C |
|
Déterminer les valeurs extrêmes des déformations |
|
|
|
Déterminer des concentrations de contraintes dans un composant |
|
|
Modélisation plane |
Déterminer le champ des vecteurs vitesses des points d'un solide |
C |
|
Commentaires : Les méthodes graphiques peuvent être utilisées mais leur maîtrise n'est pas exigée. Pour le comportement du solide déformable, les déterminations se feront à partir des résultats de simulation. Le PFD s'applique aux solides en translation par rapport à un référentiel, ou en rotation autour d'un axe fixe. Le principe fondamental de la statique est présenté comme un cas particulier du principe fondamental de la dynamique. En classe de première, l'application du PFD se limite à des problèmes plans. La résolution des problèmes de statique plane est conduite à l'aide du principe fondamental de la dynamique. L'application du PFD en référentiel non galiléen est présentée, en précisant les termes dus aux effets d'inertie. |
B4 ― Valider un modèle
Compétences attendues :
― interpréter les résultats obtenus ;
― préciser les limites de validité du modèle utilisé ;
― modifier les paramètres du modèle pour répondre au cahier des charges ou aux résultats expérimentaux ;
― valider un modèle optimisé fourni.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Modèle de connaissance |
Vérifier la compatibilité des résultats obtenus (amplitudes et variations) avec les lois et principes physiques d'évolution des grandeurs |
|
C |
|
Comparer les résultats obtenus (amplitudes et variations) avec les données du cahier des charges fonctionnel |
C |
|
Matériaux |
Identifier l'influence des propriétés des matériaux sur les performances du système Proposer des matériaux de substitution pour améliorer les performances du système |
|
B |
Structures |
Valider l'influence de la structure sur les performances du système Proposer des modifications structurelles pour améliorer les performances du système |
|
C |
Grandeurs influentes d'un modèle |
Modifier les paramètres d'un modèle |
|
C |
Commentaires : Quelques exemples d'utilisation de nouveaux matériaux sont présentés, comme les nanomatériaux, qui permettent de modifier fortement les propriétés non mécaniques comme la conductivité. |
C. - Expérimenter
C1 ― Justifier le choix d'un protocole expérimental
Compétences attendues :
― identifier les grandeurs physiques à mesurer ;
― décrire une chaîne d'acquisition ;
― identifier le comportement des composants ;
― justifier le choix des essais réalisés.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Capteurs |
Qualifier les caractéristiques d'entrée―sortie d'un capteur Justifier le choix d'un capteur ou d'un appareil de mesure vis-à-vis de la grandeur physique à mesurer Justifier les caractéristiques (calibre, position...) d'un appareil de mesure |
|
C |
Prévision quantitative de la réponse du système |
Identifier le comportement des composants du système Prévoir l'ordre de grandeur de la mesure |
|
C |
Chaîne d'information, structure et fonctionnement |
Identifier la nature et les caractéristiques des grandeurs en divers points de la chaîne d'information |
|
C |
|
Maîtriser les fonctions des appareils de mesure et leurs mises en œuvre |
|
C |
Commentaires : Dans ce programme, le terme capteur regroupe les capteurs (information analogique), les détecteurs (information TOR) et les codeurs (information numérique). Pour justifier le choix des grandeurs à mesurer et un protocole expérimental, il est nécessaire de savoir prévoir quantitativement le comportement du système, l'influence des composants et l'ordre de grandeur de la réponse. |
C2 ― Mettre en œuvre un protocole expérimental
Compétences attendues :
― conduire les essais en respectant les consignes de sécurité à partir d'un protocole fourni ;
― traiter les données mesurées en vue d'analyser les écarts.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Appareils de mesures, règles d'utilisation |
Mettre en œuvre un appareil de mesure Paramétrer une chaîne d'acquisition |
|
C |
Paramètres de configuration du système |
Régler les paramètres de fonctionnement d'un système |
|
C |
Paramètres de configuration d'un réseau |
Paramétrer un protocole de communication |
|
C |
Routines, procédures... Systèmes logiques à événements discrets |
Générer un programme et l'implanter dans le système cible |
|
C |
Modèles de comportement |
Analyser les résultats expérimentaux Traiter les résultats expérimentaux, et extraire la ou les grandeurs désirée(s) |
|
C |
Commentaires : Le traitement des mesures et la présentation des résultats mobilisent systématiquement les outils numériques. |
D. - Communiquer
D1 ― Rechercher et traiter des informations
Compétences attendues :
― rechercher des informations ;
― analyser, choisir et classer des informations.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Dossier technique |
Rechercher une information dans un dossier technique Effectuer la synthèse des informations disponibles dans un dossier technique |
|
C |
Bases de données, sélection, tri, classement de données |
Optimiser les paramètres et les critères de recherche en vue de répondre au problème posé |
C |
|
Internet, outil de travail collaboratif, blogs, forums, moteur de recherche |
Rechercher des informations Vérifier la nature de l'information Trier des informations selon des critères Utiliser des outils adaptés pour rechercher l'information Mettre à jour l'information |
C |
|
D2 ― Mettre en œuvre une communication
Compétences attendues :
― choisir un support de communication et un média adapté, argumenter ;
― produire un support de communication ;
― adapter sa stratégie de communication au contexte.
CONNAISSANCES |
CAPACITÉS |
1re |
T |
---|---|---|---|
Croquis, schémas |
Réaliser un croquis ou un schéma dans un objectif de communication |
C |
|
Production de documents |
Distinguer les différents types de documents en fonction de leurs usages Choisir l'outil bureautique adapté à l'objectif Réaliser un document numérique Réaliser et scénariser un document multimédia |
C |
|
Commentaires : Les normes des croquis et schémas ne font pas l'objet de cours spécifiques et sont à la disposition des élèves. La mise en œuvre de la communication n'est pas une finalité. Elle est liée à l'ensemble des activités, et notamment au projet. |
III. - Projet
Le projet mobilise des compétences pluridisciplinaires, en particulier celles développées en sciences de l'ingénieur, en mathématiques, en sciences physiques, chimiques, fondamentales et appliquées, en sciences de la vie et de la Terre, et sollicite des démarches de créativité pour imaginer des solutions qui répondent à un besoin.
Les activités des élèves sont organisées, par groupes, autour d'une démarche qui consiste à :
― analyser le problème à résoudre ;
― imaginer des solutions ;
― choisir une solution et justifier le choix d'un point de vue scientifique, technologique, socio-économique ;
― formaliser la solution ;
― réaliser tout ou partie de la solution ;
― évaluer les performances de la solution ;
― présenter la démarche suivie.
Dans le cadre de ces activités, les productions attendues peuvent être :
― des justifications scientifiques, technologiques, socio-économiques... validant la solution proposée ;
― des architectures de solutions sous forme de schémas, croquis, blocs, diagrammes fonctionnels et structurels ou d'algorithmes ;
― des documents de formalisation de la solution imaginée ;
― des supports de communication ;
― un prototype ou une maquette numérique ou matérielle.